If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-5x-236=0
a = 16; b = -5; c = -236;
Δ = b2-4ac
Δ = -52-4·16·(-236)
Δ = 15129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15129}=123$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-123}{2*16}=\frac{-118}{32} =-3+11/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+123}{2*16}=\frac{128}{32} =4 $
| 13.4•9=h;117.8,118.7,120.6 | | y-7+3y=7 | | 12x-11=36 | | 9.9+r=24.2;12.7,16.3 | | 4^x+9=12 | | 2x4x=36 | | 3x-40=× | | 2x-3=x+2* | | 5(x+2)-4=3x-16 | | 9x+9x+9x+9x=27 | | y/4=-23 | | 148x^2+603.86x-1785=0 | | (x-2)(x+1)=(x-3)(x+4) | | (x+5)(x+7)=(x+1)(x+19) | | 13(3x+2)-12(x+4)=38x | | 5(4x+13)-6(5x-12)=57 | | 148x^2-393,64x-1785=0 | | 5b-7=98 | | 3(2x-5)-4(2x-9)=2x-10 | | X^3+4x=352 | | (X/4)+(8x)=45 | | 10k-8-18k-18=-8k-5 | | |2x+5|−4=10 | | 2p+7p–20=125 | | -3(a-12)=12 | | -4+17x=-129+8x | | (7,2x+3,5)+(2,4x-9)-(8,6x-9,5)=11 | | 6-4p÷9-10=-6 | | 15+1,2x+21=3x-4+0,2x | | 2x+6=(4x-6) | | 8,4-(5,2-x)=7,2 | | 0,6x=7+2 |